• °øÁö»çÇ×
    • 2025³â 32±Ç 2È£ ¹ß°£ ¿¹Á¤

         ¾È³çÇϽʴϱî? Çѱ¹°æÁ¦Çк¸ ÆíÁýÀ§¿øÀåÀ» ¸Ã°í ÀÖ´Â ¿¬¼¼´ëÇб³ °æÁ¦ÇкΠÃÖ»ó¿± ±³¼öÀÔ´Ï´Ù. À̹ø 12¿ù¿¡ 32±Ç 2È£°¡ Ãâ°£ ¿¹Á¤ÀÔ´Ï´Ù. °ð Ãâ°£µÉ ÀúÈñ ÇмúÁö¿¡ ¿¬±¸ÀÚ ºÐµéÀÇ ¿ì¼öÇÑ ³í¹®À» Åõ°íÇØ ÁÖ½Ã¸é °¨»çÇϰڽÀ´Ï´Ù.

Çѱ¹°æÁ¦Çк¸ Á¦ 32±Ç, Á¦ 1È£ (2025³â º½)

    ¼ÕÇØ¹è»ó¸ðÇüÀ» Ȱ¿ëÇÑ ÀÚÀ²ÁÖÇàÀÚµ¿Â÷ »ç°íÀ§Çè¿¡ ´ëÇÑ ¿¬±¸
    Á¶ÀοÀ, ±èö¿µ
    Pages 3-22
  • Abstract ( Eng | Kor ) || PDF
    • A Tort Liability Model of Accident Risk in Autonomous Vehicles
      In Oh Cho, Chulyoung Kim


         This study theoretically analyzes how the advancement of autonomous driving technology affects automobile accident risk using a tort liability framework. The analysis shows that under strict liability, improvements in autonomous driving technology may lead to increased driver inattentiveness, which can raise the overall probability of accidents depending on the magnitude of this behavioral response. In contrast, under the negligence rule, the development of autonomous technology does not induce such inattentiveness, and the accident risk consistently decreases. Therefore, in contexts where public concern over autonomous vehicle accidents is high, adopting a negligence-based regulatory regime rather than strict liability may facilitate the faster and broader adoption of autonomous driving technologies across society.
    •    º» ¿¬±¸¿¡¼± ¼ÕÇØ¹è»ó¸ðÇüÀ» Ȱ¿ëÇÏ¿© ÀÚÀ²ÁÖÇà±â¼úÀÇ ¹ßÀüÀÌ ÀÚµ¿Â÷ »ç°í À§Çè¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇØ ÀÌ·ÐÀûÀ¸·Î ºÐ¼®Çϰí ÀÖ´Ù. ºÐ¼®¿¡ ÀÇÇÏ¸é ¾ö °ÝÃ¥ÀÓ(strict liability) ÇÏ¿¡¼± ÀÚÀ²ÁÖÇà±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ¿îÀüÀÚÀÇ Å¸¸ÇÔÀÌ Áõ°¡ÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ È¿°úÀÇ Å©±â¿¡ µû¶ó »ç°íÈ®·ü ÀÚü°¡ ³ô¾ÆÁú ¼ö ÀÖ´Ù. ÇÏÁö¸¸ °ú½ÇÃ¥ÀÓ(negligence) ÇÏ¿¡¼± ÀÚÀ²ÁÖÇà±â¼úÀÌ ¹ßÀüÇÏ´õ¶óµµ ¿îÀüÀÚÀÇ Å¸¸ÇÔÀÌ Áõ°¡ÇÏ´Â È¿°ú°¡ Á¸ÀçÇÏÁö ¾ÊÀ¸¸ç, µû¶ó¼­ ¸¸¾à ÀÚÀ²ÁÖÇàÀÚµ¿Â÷ »ç°íÀ§Çè¿¡ ´ëÇÑ ´ëÁßÀÇ °æ°¢½ÉÀÌ Å« »óȲÀ̶ó¸é ¾ö °ÝÃ¥ÀÓ ¹æ½Äº¸´Ù´Â °ú½ÇÃ¥ÀÓ ¹æ½ÄÀ¸·Î ±ÔÁ¦ÇÏ´Â °ÍÀÌ »çȸ Àü¹Ý¿¡ ´ëÇÑ ÀÚ À²ÁÖÇà±â¼ú µµÀÔ ¼Óµµ¸¦ ³ôÀÏ ¼ö ÀÖ´Â ¹æ¹ýÀ̶ó ÇÒ ¼ö ÀÖ´Ù.
    °Ë»ö Áö¼ö¸¦ ÀÌ¿ëÇÑ °Å½Ã°æÁ¦ Àü¸Á¸ðÇü ¿¬±¸
    ¹Ú¼º´ë, ±èÇöÇÐ
    Pages 23-50
  • Abstract ( Eng | Kor ) || PDF
    • Macroeconomic Forecasting Models using Search Indices
      Sungdae Park, Hyun Hak Kim


         Models for predicting macroeconomic variables such as economic growth rate and inflation rate have traditionally relied solely on structured data. In big data research, unstructured data such as sentiment indices have also been introduced. In this study, we introduced a forecasting model by considering the search volume related to specific macroeconomic variables as indicative of the variability of those variables. Meanwhile, for the search volume index, we leveraged its rapid collection cycle to utilize the characteristics of macroeconomic variables with different cycles. We conducted both typicall forecasting and nowcasting using a Bayesian model average mixture cycle forecasting model. Through this model, we forecasted Korea¡¯s economic growth rate using variables representing industrial production index, prices, currency, oil prices, interest rates, labour, wages, and trade. While search volume itself does not accurately reflect economic information, it can reflect trends in public opinion or consumer economic sentiment that existing macroeconomic data cannot track, making it a useful supplementary variable for existing economic models and potentially improving forecasting power. Even in a very simple form of macroeconomic forecasting model, the search results index demonstrates improved forecasting power, and we expect that expanding this to general equilibrium models could yield significant benefits.
    •    °æÁ¦¼ºÀå·ü, ¹°°¡»ó½Â·ü °°Àº °Å½Ã°æÁ¦ º¯¼ö¸¦ ¿¹ÃøÇϱâ À§ÇÑ ¸ðÇüÀº Á¤Çü µ¥ÀÌÅ͸¸À» »ç¿ëÇÏ¿© ¿Ô´Ù. ºòµ¥ÀÌÅÍ ¿¬±¸¿¡¼­´Â °¨¼ºÁö¼ö¿Í °°Àº ºñÁ¤Çü µ¥ÀÌÅ͵éÀÌ µµÀԵDZ⵵ ÇÏ¿´´Âµ¥, º» ¿¬±¸¿¡¼­´Â ƯÁ¤ÇÑ °Å½Ã°æÁ¦º¯¼ö¿Í °ü ·ÃµÈ °Ë»ö·®ÀÌ ÇØ´ç º¯¼ö¿¡ ´ëÇÑ º¯µ¿¼ºÀ» ÀǹÌÇÏ´Â °ÍÀ¸·Î º¸°í À̸¦ ÀÌ ¿ëÇÏ¿© °Å½Ã °æÁ¦ ¿¹Ãø ¸ðÇüÀ» µµÀÔÇÏ¿´´Ù. ÇÑÆí °Ë»ö·® Áö¼öÀÇ °æ¿ì, ¼öÁý ÁֱⰡ ¸Å¿ì ºü¸£´Ù´Â Á¡À» Ȱ¿ëÇÏ¿© ÁֱⰡ ´Ù¸¥ °Å½Ã°æÁ¦ º¯¼öµéÀÇ Æ¯¼º µéÀ» Ȱ¿ëÇÏ¿© º£ÀÌÁö¾È ¸ðÇü Æò±Õ È¥ÇÕÁֱ⠿¹Ãø¸ðÇüÀ» ÅëÇØ ÀϹÝÀûÀÎ ¿¹ Ãø°ú ´õºÒ¾î ÇöÀç¿¹Ãø ¿ª½Ã ½Ç½ÃÇÏ¿´´Ù. º» ¸ðÇüÀ» ÅëÇØ ¿ì¸®³ª¶ó °æÁ¦¼º Àå·ü ¿¹ÃøÀ» »ê¾÷»ý»êÁö¼ö, ¹°°¡, ÅëÈ­, À¯°¡, ±Ý¸®, ³ëµ¿, ÀÓ±Ý, ¹«¿ª µî À» ³ªÅ¸³»´Â º¯¼öµé·Î ½Ç½ÃÇÑ °á°ú °Ë»ö·® ±× ÀÚü´Â ºñ·Ï Á¤È®ÇÑ °æÁ¦ Á¤ º¸¸¦ ¹Ý¿µÇÏ´Â °ÍÀº ¾Æ´ÏÁö¸¸, ±âÁ¸ÀÇ °Å½Ã°æÁ¦ µ¥ÀÌÅͰ¡ ÃßÀûÇÏÁö ¸øÇÏ´Â ¿©·ÐÀÇ È帧 ȤÀº ¼ÒºñÀÚµéÀÇ °æÁ¦½É¸® µîÀ» ¹Ý¿µÇÒ ¼ö ÀÖ¾î ±âÁ¸ °æÁ¦ ¸ð Çü¿¡ º¸Á¶ÀûÀÎ º¯¼ö·Î Ȱ¿ëµÉ ¼ö ÀÖ¾î ¿¹Ãø·Â Çâ»óÀ» ±â´ëÇÒ ¼ö ÀÖÀ» °ÍÀ¸ ·Î º¸ÀδÙ. ¸Å¿ì ´Ü¼øÇÑ ÇüÅÂÀÇ °Å½Ã°æÁ¦ ¿¹Ãø¸ðÇü¿¡¼­µµ °Ë»ö °á°ú Áö¼ö ´Â ¿¹Ãø·ÂÀ» Çâ»ó½ÃŰ´Â °á°ú¸¦ º¸¿© À̸¦ ÀϹݱÕÇü ¸ðÇü µîÀ¸·Î È®ÀåÇÏ°Ô µÇ¸é »ó´çÇÑ ÀÌÁ¡ÀÌ ÀÖÀ» °ÍÀ¸·Î º¸ÀδÙ.


The Korean Journal of Economics, Vol. 32, No. 1 (Spring 2025)