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Abstract
This study estimated the level and growth of total factor 

productivity in the Korean electricity generation sector using 

plant-level panel data from over the period 2002-2019. In particular, 

we compared the productivity differences across different plant 

types. This study used a semiparametric estimation method that 

enables the control for the endogeneity of productivity shocks 

without using instrumental variables (IVs). It was found that steam 

power plants presented the highest total factor productivity, 

followed by internal combustion and combined cycle. The 

productivity growth fluctuated over time, ranging from -0.285% to 

0.203%, and presented a declining trend during the sample period. 

The results also indicated that the load and plant factors 

significantly affected the total factor productivity of the plants. 

However, the age variable that may reflect the learning-by-doing 

effect did not affect plant productivity.

KRF Classification : B030902, B030904

Keywords : total factor productivity, Korean electricity generation 

sector, semiparametric method

1)

  * Professor, Graduate School of International Studies, Yonsei University, 

Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea, Tel: +82-2-2123-6287, e-mail: 

dhkim2@yonsei.ac.kr



74  Donghun Kim

Ⅰ. Introduction  

A range of indicators can be used to determine the productivity 

performance of a firm or industry. Utilities, such as electricity supply, 

often operate in markets that lack prices and costs determined under 

competitive conditions. In this case, the usual market indicators of 

performance, such as profitability and rate of return, cannot be used 

to accurately gauge a firm or industry’s performance. It is possible 

that these financial indicators might reflect the distortions themselves 

rather than the performance of the firms or industry in question. In 

these circumstances, indicators of the level and change in productivity 

would be more appropriate performance indicators (Abbot, 2005).

One method of determining the level of productivity is to estimate 

the total factor productivity (TFP), which is the ratio of the total 

aggregate output quantity index to the aggregate input quantity index. 

TFP growth, therefore, is the difference between the growth of output 

and input quantity indices. There are two different ways to measure 

TFP: the frontier and non-frontier approaches. Under the non-frontier 

approach, it is assumed that firms are technically efficient, whereas in 

the frontier approach, the role of technical efficiency in overall firm 

performance is identified (Mahadevan, 2003). Within the frontier 

method, two main categories can be distinguished: stochastic frontier 

analysis (SFA) and data envelopment analysis (DEA). SFA relates to 

the average or central tendency behavior of firms, whereas DEA 

relates to the best performance and deviation of all performances from 

the frontier line (Cooper et al., 2007). 

Growth accounting is a non-frontier approach that measures the 

growth of output, which is explained by the growth of different inputs 

such as labor, capital, and intermediate inputs, and by unaccounted 

or explained growth that represents productivity growth. Theories on 

growth accounting methods and applications have evolved over time, 
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with key influential studies by Abramovitz (1956), Solow (1957), 

Kendrick (1961), Jorgenson and Griliches (1967), and Jorgenson et al. 

(1987).1)

This study estimated the productivity level and growth in the 

electricity generation sector in Korea. In the previous literature, to the 

best of our knowledge, there have been no studies that estimate TFP 

for the market. Hwang and Lee (2013) divided profit change into 

changes in facility growth, capital productivity, and input and output 

prices, and compared the sources of profit changes before and after 

the market reform in April 2001. Park and Lesourd (2000) estimated 

the efficiencies of 64 conventional fuel power plants in Korea using 

DEA. Heshmati (2013) estimated the productivity efficiency of the 

Korean electricity generation sector using a stochastic frontier model 

and Malmquist productivity index. The study indicates that 

productivity efficiency is affected by the facility type, maintenance 

costs, and real fuel costs. It also suggests that productivity efficiency 

was not affected by the restructuring of market reform in 2001. 

This study adopted a different approach and used a semiparametric 

estimation method (Olley and Pakes, 1996; Levinsohn and Petrin, 

2003; Ackerberg et al., 2015). An advantage of this approach is that 

we can control for the endogeneity of productivity shocks without 

using instrumental variables (IVs). This study used plant-level 

unbalanced panel data from 2002 to 2019 to estimate the level and 

growth of TFP. In particular, it compared productivity across different 

plant types—namely, steam power, combined cycle, and internal 

combustion—and analyzed the determinants of productivity. The 

remainder of this paper is organized as follows. Section II provides 

an overview of the Korean electricity generation sector. Section III 

 1) The first attempt to derive productivity change measurements for the electricity 

industry was undertaken by Kendrick (1961) as part of his work on 

productivity trends of the United States as a whole. He further refined it in 

subsequent work (1973, 1982; Kendrick and Grossman, 1980).
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explains the model specifications and data. Section IV presents the 

empirical results, and Section V concludes the paper. 

Ⅱ. An Overview of Korean Electricity 

Generation Sector

As of 2020, the total electricity generated was 575,269 gigawatt 

hours (GWh). Power generation peaked at 592,905 GWh in 2018 and 

declined thereafter. The major sources of power generation include 

steam, nuclear, combined cycle, and hydro, followed by group energy, 

new and renewable, hydro, and internal combustion. 

<Figure 1> Trends in electricity power generation (GWh)

Source: Electric Power Information System (EPSIS). 

Note: Non-utility in common use is self-consumption. Others include by-product 

gas and waste heat. 

In the Korean electricity market, the Korea Electric Power Company 

(KEPCO) and its subsidiaries represented 71.5% of power generation. 

Among the subsidiaries, Korea Hydro & Nuclear Power Co. (KHNP) 

had the largest share at 29.8%, followed by Korea South–East Power 



Estimation of Productivity in the Korean Electricity Generation Sector  77

(KOSEP), Korea Midland Power (KOMIPO), Korea East–West Power 

(KEWESPO), Korea Southern Power (KOSPO), and Korea Western 

Power (KOWEPO). The others were independent power producers 

(Table 1). 

<Table 1> Power generation by companies (MWh in 2020)

Company Power Generated Share (%)

KOSEP 51,775,424 9.4

KOMIPO 48,881,673 8.9

KOWEPO 39,974,937 7.2

KOSPO 43,429,459 7.9

KEWESPO 45,566,130 8.3

KHNP 164,610,133 29.8

KEPCO 284,490 0.1

KEPCO and subsidiaries 394,522,245 71.5

Others 157,639,915 28.5

Total generation 552,162,160 100

Source: Electric Power Information System (EPSIS). 

Note: Non-utility self- consumption is not included in the total generation.

In total power generation, the share of thermal power plants, which 

include steam, combined cycle, and internal combustion, increased to 

64% in 2013 and remained at more than 50% with a declining trend 

(Figure 2).

<Figure 2> Share of generation by thermal power plants (%)

Source: Electric Power Information System (EPSIS).
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Steam power plants generate steam by burning anthracite coal, 

bituminous coal, heavy oil, and liquefied natural gas (LNG) and 

operate steam turbines to generate electricity. Combined-cycle plants 

produce electricity by using both gas and steam turbines. The heat 

waste from the gas turbine is routed to the steam turbine to produce 

extra electricity. They mostly use LNG as a fuel. Internal combustion 

plants use diesel as the primary fuel source. Table 2 shows the 

changes in the different types of fuel over time, and Figure 3 presents 

the trend in aggregated fuel consumption in billion kcal. The total fuel 

consumption peaked in 2013 and declined thereafter.

<Table 2> Fuel consumption in thermal power plants

Year Anthracite Coal Bituminous Coal Heavy Oil Diesel Oil Gas Total 

1,000

ton
kcal/kg

1,000

ton
kcal/kg

1,000

㎘
kcal/ℓ

1,000

㎘
kcal/ℓ

1,000

ton
kcal/kg

Billion 

kcal

2002 2,751 4,583 40,311 6,127 4,528 9,940 277 9,029 5,983 13,023 385,027

2007 2,392 4,545 55,950 5,871 3,899 9,972 120 8,908 10,829 13,034 520,452

2012 1,797 4,750 78,805 5,057 3,272 9,766 141 8,903 15,321 13,273 643,652 

2017 1,079 5,387 89,217 5,479 928 10,003 174 8,993 8,161 13,158 612,870

2018 992 5,265 89,549 5,373 1,013 10,069 215 8,932 9,890 13,096 628,043

2019 1,165 5,179 83,321 5,505 362 9,960 323 8,924 8,891 12,967 586,479 

2020 971 5,090 69,094 5,597 283 9,872 169 8,929 10,144 13,335 531,237

Source: Electric Power Information System (EPSIS). 

Note: Data from 2002 to 2017 were reported at five-year intervals, while more 

recent data after 2017 were reported annually. All annual data from 

2002 to 2020 can be obtained by requesting it from the author.

<Figure 3> Trends in total fuel consumption (billion kcal)

Source: Electric Power Information System (EPSIS).



Estimation of Productivity in the Korean Electricity Generation Sector  79

Ⅲ. Model Specification and Data

This section explains the model for estimating productivity and the 

data used in the model estimation. 

1. Model specification

Let us assume that a firm’s production technology can be 

represented by the production function F⋅, which relates to output 

Y , inputs X , and productivity shocks. In addition, let us assume 

that firms produce a homogeneous product using a Cobb–Douglas 

technology as follows: 

            . (1)

where   is the log of output,   is the log of capital,   is the log 

of labor input, and   is the log of intermediate input. Parameters 

 ,  , and   are the coefficients of the variables. The equation has 

two unobservables: the log of a firm’s productivity   and a residual 

 , which has standard properties. If firms decide to maximize the 

present discounted value of current and future profits and optimally 

choose the level of inputs used in the production process as the 

solution to the dynamic profit maximization problem, then inputs are 

likely to be correlated with productivity shocks,  . This is because 

profit-maximizing firms increase their output and use inputs in 

response to positive productivity shocks. This means that standard 

estimation methods such as ordinary least squares (OLS) yield 

inconsistent estimates. The correlation between labor and productivity 

shocks renders OLS estimates of the equation biased and inconsistent 

(Marshak and Andrews, 1944). Furthermore, standard approaches to 

endogeneity, such as the fixed-effects or within-group estimator and 
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IV method, do not necessarily work (Grilliches and Mairesse, 1995). 

The fixed-effects estimator may deal with the correlation at the cost 

of imposing productivity shocks with no time variation. IV methods 

are limited by the difficulty of finding appropriate instruments, that 

is, variables that are correlated with the endogenous variable but 

uncorrelated with the productivity term.

Rather than resorting to standard estimation methods, Olley and 

Pakes (1996) identified the equation from a dynamic model of firm 

behavior that allows for idiosyncratic uncertainty and specifies the 

information available when input decisions are made. This amounts 

to the assumption that firms decide to maximize the present 

discounted value of current and future profits in an environment in 

which productivity is the only unobserved source of firm-specific 

uncertainty. In particular, it was assumed that ωit follows an 

exogenous first-order Markov process. Additionally, the solution to 

the dynamic profit maximization problem generates a demand 

function if the proxy variable under certain assumptions can be 

inverted to define a firm’s productivity as a function of observables, 

which is called the control function. To control for the correlation 

between unobservable productivity shocks and input levels, Olley and 

Pakes (1996) proposed using a firm’s investment as a proxy variable 

for its productivity and a low-order polynomial to approximate the 

unknown control function: 

    . (2)

This equation indicates that investment is a function of the state 

variable  , and  . Then, assuming that    is strictly 

increasing in  , we can invert the investment policy function:

  
    . (3)
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However, when firms face substantial adjustment costs, the 

investment variable may not be appropriate because it may not fully 

respond to changes in productivity and may become severely 

truncated at zero. This led Levinsohn and Petrin (2003) to propose an 

alternative approach that uses intermediate inputs rather than 

investments in the control function: 

    . (4)

Again, under the assumption that    is strictly increasing in 

 , we get

  
   . (5)

By plugging   in the production function, we obtain

          
    . (6)

Thus,   
    can be used to control for endogeneity. 

Equations (2) and (4) assume that labor and intermediate inputs are 

non-dynamic inputs selected simultaneously at , after the firm has 

observed  . Thus, Equation (6) can be written as follows:

       .  (7)

where           
   . Let us denote   

as the firm’s information set at , and assume that the information set 

includes current and past productivity shocks but does not include 

future productivity shocks (Ackerberg et al., 2015). Under the 

assumption that the transitory shocks   satisfy        and 
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productivity shocks evolve according to the distribution,      

      ,   can be decomposed into its conditional 

expectation at    and an innovation term:

                         . (8)

Given that          and        , implying that 

         , the parameter estimates  and   can be 

obtained from the following moment conditions: 

                  . (9)

The second moment condition can be used to estimate  , 
, and 

  from Equation (10):

                   

                

             . (10)

However, Ackerberg et al. (2015) argued that these estimation 

strategies may suffer from identification issues. They showed that 

unless additional assumptions are made about the data-generating 

processes, the labor input may not vary independently of the 

nonparametric function estimated using the low-order polynomial; 

that is, if labor has no dynamic implications and is chosen with full 

knowledge of  , labor demand can be written as    . 

With this data-generating process, substituting (5) into the equation 

yields

  
   . (11)
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This implies that labor demand is functionally dependent on  , 

 , and . If this is the case, the identification condition (9) fails. This 

suggests that the labor parameter cannot be separately identified from 

the nonparametric function of   . To avoid this functional 

dependence problem, Ackerberg et al. (2015) assumed that firm- 

specific unobserved adjustment costs for labor input have dynamic 

effects. This assumption makes the input demand function conditional 

on the labor demand. Consequently, the labor input parameter cannot 

be identified in the first stage, and all coefficients are estimated in the 

second stage. Specifically, the firm’s intermediate input is given by

 
  . (12)

Again, under the assumption that    is strictly increasing 

in  , we obtain

 

 
  .  (13)

Plugging Equation (13) into the production function will yield

         

 
   

       . (14)

Then, the first stage moment condition is

        
      . (15)

Note that the labor parameter and intermediate input are not 

identified in the first stage, unlike in Levinsohn and Petrin (2003). In 
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Ackerberg et al. (2015), the labor input parameter can be recovered 

together with other parameters from the second-stage conditional 

moment:

 ϑ                  
                    

             . (16)

This study used the approach by Ackerberg et al. (2015) to estimate 

the coefficients of the productivity function (1). Using the estimated 

coefficient, we recovered individual plants’ TFP,  , as follows:

exp   exp    . (17)

2. Data

The data used in this study were extracted from the Electric Power 

Statistics Information System (EPSIS). They include information on the 

volume of power generation, generation capacity, and fuel usage. 

Output was measured by the volume of power generation, capital was 

estimated by generation capacity, energy input was proxied by fuel 

usage, and labor was measured by the number of employees. The data 

were collected from 2002 to 2019. Our data cover thermal power 

plants that belong to five KEPCO subsidiaries: KOSEP, KOMIPO, 

KEWESPO, KOSPO and KOWEPO. The power plants of Korea Hydro 

and Nuclear Power (KHNP) were not included in the analysis, as they 

use different technology of production, and some variables such as 

fuel usage are not observed. The data are unbalanced panel data, as 

some power plants exited the market and stopped generating 

electricity during the sample period, and the others newly entered the 
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market. There are two types of thermal power plants: steam power 

plants that use bituminous and anthracite coal and heavy oil as fuel, 

and combined power plants that use LNG or diesel. Table 3 shows 

the sample statistics of the variables used in the analysis. The 

variables are in logarithmic form. Labor represents the number of 

workers in each plant. The output, Q, is measured by the volume of 

power generation in megawatts hours (MWh), and capital, K, is 

measured by the generation capacity in 1000 kw. Fuel, F, is measured 

in millions of calories. The table indicates that the variable with the 

largest standard deviation is output, followed by fuel, labor, and 

capital. Table 4 displays the correlation coefficients among the 

variables, which reveal that the highest correlation coefficient is 

between output and fuel, at 0.9. The correlation coefficient remains at 

0.64 between output and capital, and at 0.36 between output and 

labor.

<Table 3> Sample statistics

Variable Mean Std. Dev. Min Max

ln(L) 5.03 1.15 2.35 8.32

ln(Q) 14.43 1.39 5.24 16.48

ln(K) 12.95 0.69 10.59 14.53

ln(F) 15.22 1.36 6.89 17.12
  

Note: The sample size is 1,447.

<Table 4> Correlation coefficients

ln(Q) ln(L) ln(K) ln(F)

ln(Q) 1

ln(L) 0.36 1

ln(K) 0.64 0.54 1

ln(F) 0.93 0.37 0.64 1

Note: The sample size is 1,447.
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Ⅳ. Results

Table 5 presents the estimated coefficients of the production 

function. The coefficients of labor, capital, and fuel are significant at 

the 10%, 5%, and 1% levels, respectively. The results also show that 

the Wald test of constant returns to scale cannot be rejected at the 5% 

level, but it can be rejected at the 10% significance level.

<Table 5> Estimated coefficient in the production function

Variable Coefficients Standard Error T-value

ln(L) 0.017 0.009 1.889*

ln(K) 0.767 0.344 2.230**

ln(F) 0.513 0.206 2.490***
  

Note: 1. * significant at 10%; ** significant at 5%; *** significant at 1%. 

       2. Wald test of constant returns to scale: Chi2 = 3.04 (p = 0.0812).

<Figure 4> Distribution of productivity level
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The estimated TFP levels of power plants are presented in Figure 

4, with the productivity level estimated in logarithmic form. The 

average level of productivity is 0.043, with 95% confidence intervals 

of [0.037, 0.048]. The density distribution in the figure shows that the 



Estimation of Productivity in the Korean Electricity Generation Sector  87

majority of power plants exhibit the average productivity level, while 

a relatively small proportion of plants display low or high levels of 

productivity. However, the figure does not provide information about 

the source of productivity differences, which could be related to the 

types of power plants or individual plants' efficiency. Therefore, we 

group the power plants according to their plant and fuel types to 

investigate any differences in productivity.

Productivity differences across various plant types are presented in 

Table 6, where steam power exhibits the highest level of productivity, 

followed by internal combustion and combined cycle. Table 7 displays 

the productivity levels across plants that use different fuel types. 

Power plants that use oil as fuel demonstrate higher productivity 

levels than coal power plants or those that use gas. Notably, the 

productivity differences within the same fuel type plants are greater 

for oil-powered plants.

<Table 6> Productivity across different plant types

Plant Type Mean Standard Error 95% Confidence Interval

Steam power 0.046 0.003 (0.040, 0.052)

Combined cycle 0.027 0.003 (0.022, 0.032)

Internal combustion 0.029 0.006 (0.017, 0.041)

Note: Productivity was estimated in logarithmic form.

<Table 7> Productivity across different fuel types

Fuel Type Mean Standard Error 95% Confidence Interval

Coal 0.042 0.001 (0.040, 0.045)

Oil 0.057 0.011 (0.035, 0.079)

Gas 0.025 0.001 (0.020, 0.029)

Note: Productivity was estimated in logarithmic form.

Table 8 shows annual growth in productivity during the sample 

period. The mean is the average annual growth of individual plants. 

The mean productivity growth ranges from -0.285% to 0.203%. Figure 
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5 shows the trends of the mean and 95% confidence interval and 

indicates that productivity growth fluctuated over time and presented 

a declining trend during the sample period.

<Table 8> Productivity growth (%)

Year Mean Standard Error 95% Confidence Interval

2003 0.121 0.073 (-0.023, 0.265)

2004 0.029 0.070 (-0.109, 0.167)

2005 -0.005 0.047 (-0.098, 0.087)

2006 0.056 0.069 (-0.079, 0.190)

2007 0.132 0.096 (-0.056, 0.320)

2008 -0.164 0.067 (-0.295, -0.033)

2009 0.147 0.064 (0.022, 0.272)

2010 0.107 0.055 (-0.002, 0.216)

2011 0.011 0.032 (-0.053, 0.074)

2012 0.203 0.064 (0.077, 0.329)

2013 0.003 0.114 (-0.220, 0.225)

2014 -0.096 0.109 (-0.309, 0.118)

2015 -0.083 0.048 (-0.177, 0.011)

2016 0.002 0.046 (-0.088, 0.093)

2017 -0.285 0.114 (-0.510, -0.061)

2018 0.023 0.048 (-0.072, 0.118)

2019 -0.159 0.053 (-0.263, -0.056)

  

 

<Figure 5> Trend of productivity growth
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To identify the sources of productivity differences, we regressed the 

estimated productivity on plant characteristics. These characteristics 

include the load factor, plant factor, auxiliary use factor, and age of 

the power plants. The load factor is the average load divided by the 

peak load, and the plant load is the average load divided by the 

generating capacity. The auxiliary use factor is the auxiliary use 

divided by the gross generation. Table 9 shows the regression results. 

Three models were used to estimate the effects of the plant 

characteristics on productivity. All three indicated that plant 

productivity is affected by load and plant factors, but not by the 

auxiliary use factor and age. The age variable can capture the learning 

effects of plant production. However, this effect may not perform well 

in the Korean electricity generation sector. 

<Table 9> Effects of plants’ characteristics on productivity 

Variable OLS Fixed Effect Random Effect

Load factor
0.018

(0.006)***

0.043

(0.025)*

0.033

(0.017)*

Plant factor
0.015

(0.005)***

0.014

(0.005)***

0.016

(0.005)***

Auxiliary use factor
0.042

(0.024)*

0.017

(0.001)

0.019

(0.015)

Age
-0.0002

(0.0001)

0.001

(0.001)

0.0003

(0.0003)

Constant
0.023

(0.004)***

-0.014

(0.038)

0.008

(0.012)

R-squared 0.211 - -

N 1,447 1,447 1,447

Note: The numbers in parentheses represent the standard errors. Significance 

levels are indicated by ***, which denotes significance at 1%; **, which 

denotes significance at 5%; and *, which denotes significance at 10%. 

The reported results are based on robust standard errors.
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Ⅴ. Conclusion

This study estimated the level and growth of total productivity in 

the Korean electricity generation sector using plant-level panel data. 

We compared the productivity differences across different plant types. 

It was found that TFP was the highest, followed by internal 

combustion and combined cycle. The productivity growth fluctuated 

over time, ranging from -0.285% to 0.203%, and presented a declining 

trend during the sample period. The results also indicated that the 

load and plant factors significantly affected the TFP of the plants. 

However, the age variable that may reflect the learning-by-doing 

effect did not affect plant productivity. This suggests that the output 

increase mainly depended on the increase in inputs such as capital, 

fuel, and labor rather than on technological progress and management 

skills. 

This study makes several novel contributions to the existing 

literature. Firstly, it represents the first attempt to estimate TFP for the 

Korean power generation sector. Additionally, the semi-parametric 

method employed in this paper has not been previously applied to the 

electricity generation sector, to the best of our knowledge. Moreover, 

this paper uses panel data of power plants to not only identify 

productivity differences across various plant types and fuel types but 

also investigate the sources of productivity differences attributable to 

plant characteristics. These issues have received limited attention in 

the literature and require further research.
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한국 전력 생산 부문의 생산성 추정: 

준비모수방법론 접근 방식

김 동 훈*

2)

논문초록  

본 논문은 2002년부터 2019년까지의 발전소 개별 데이터를 이용하여 한

국 전력 생산 부분의 생산성을 추정하였다. 특히, 발전소의 종류에 따른 생산

성의 차이를 검증하였다. 생산성은 총요소생산성을 이용하여 생산성 수준과 

증가율을 추정하였다. 생산함수 추정에 있어서 중요한 이슈는 생산성 충격과 

노동과 자본 등의 변수들과 상관관계를 가지는 내생성의 문제이다. 본 연구에

서는 내생성 문제를 해결하기 위해서 준비모수방법론을 이용하였으며 이 방

법론은 도구변수를 사용하지 않고도 내생성 문제를 해결하게 하여 준다. 추정

결과 기력발전이 가장 높은 생산성을 나타내었고 내연발전, 복합화력 순으로 

생산성이 추정되었다. 생산성 증가율은 연도별로 -0.285%에서 0.203% 정

도로 변동성을 나타내었으며 분석기간에 걸쳐 감소하는 추세를 보였다. 또한 

발전소 부하율과 이용율은 총요소생산성에 유의한 결과를 미치고 있으나 발

전소 설립 이후 발전 기간은 생산성에 영향을 미치지 못하고 있어 발전 경험

에 따른 비용 감소 효과는 나타나고 있지 않을 것으로 추정되었다.
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