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Sangun Park

We summarize some topics in the present statistical theory and discuss over the role
of the Fisher information in those topics. We first study some measures of information
and their roles in statistics. Then we look over the data reduction and the loss of
information due to the reduction. We interpret some present statistical arguments on
point and interval estimation in terms of the Fisher information. We further comment on
some statistical models related with the Fisher information.

[. Introduction

Suppose that X is a random variable whose probability density function (p.d.f.) is f(x, 8)
where § is a scalar parameter. There are lots of information measures defined by some
statisticians. While the Fisher information measure is relevant with the parametric
probability approach, while the entropy measure is relevant with the Bayesian approach.
The Fisher information in X about §, which is the most well-known information measure

among statisticians, has been defined by the eminent statistician Sir R. A. Fisher as
16)= . (& tog fix, &))" fix. 6)ds. M)

It has been discussed in Efron and Johnstone [7] that the transformation (9/96) log
fx, 9)—(2/0B)log h(x, §) preserves the length in L? norm where htx, §) is the hazard
function. For a multiparameter case, the marginal Fisher information about a smooth scalar

function g(#) has been used in the comparison of estimators in Severini and Wong [23]
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and the optimal spacing choice in Park [20].
The entropy measure introduced by Shannon [25] is defined as

H=~|__ f(ologf (dx.

The Entropy is actually a measure of uncertainty in terms of concentration of
probabilities, so we may take the negative of the entropy measure to use as a measure of
information. It has been also noted in Park [19] that the transformation ~logf(x)—1-
logh(x) also preserves the length in L} norm. Shannon's measure has been extended to
Kullback and Leibler information (Kullback and Leibler [11]), the mutual information as
Bayesian information (Lindley, {13]) and the maximum entropy principle (Jayes, [9]).
Their relations have been elegantly studied by Soofi [24].

The Fisher information has received most attention among. present measures of
information because of its deep relation with the statistical concepts, sufficiency and
efficiency. If we have an independently and identically distributed (i.i.d.) sample of size n,
the Fisher information in the sample is n/(6). In the data reduction through a set of
statistics, we will consider the Fisher information as a criterion of a good reduction. We
propose an unbiased and most informative estimator as a point estimator which has the
most Fisher information among unbiased estimators. We also give an interpretation of the
conditional inference on ancillary statistics in terms of completing the Fisher information.
Finally we comment on the role of the Fisher information in some topics like the
comparison of the exact and the asymptotic information, the Fisher information in order
statistics, robust estimation, sample estimate of the information and the information in

some statistical models.

I. Data Reduction and Some Basic Concepts

Let X, -, X, be an independent sample of size n-from a common probability density
function f(x, #) where the functional form of f is known and & is unknown. Suppose that
we intend to reduce the dimension of the original sample for some statistical purposes like
estimation or data storage. In this case, we need a criterion about how to reduce the data. It
seems that we better preserve the information about § as much as possible after reduction.

We simplify our argument by taking the single parameter case.
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Let T be the functions of the original data, which are assumed to use instead of the
original data in answering a variety of questions about the unknown population. Then we
might question the efficiency of the chosen statistics. We wish to calculate how much
information we lose in interpreting the data through the reduction of data. Rao [22] has
considered this problem, but he said that no objective measurement of information is
possible and we have hence the difficulty in the formulation of a suitable criteria. In the
parametric approach, we can immediately consider the reciprocal of the variance a measure
of information as did Fisher. Fisher later introduced the concept likelihood and a measure
of information, (1), which is called now the Fisher information. Fisher information has its
statistical meaning in that it is closely related with the important statistical concepts
sufficiency and efficiency. In comparing two statistics, we usually consider the variance in
comparing the degree of uncertainty. However, we can consider a measure of information
in comparing the degree of certainty, thus we can consider the Fisher information as a
measure of information, not the reciprocal of the variance.

We classify a statistic according to how it contains the Fisher information, and define
some basic statistical concepts. The information in the -original sample can be divided into
the information about § and the ancillary information. The ancillary information is related
with the further configuration of data, though not relevant with the unknown parameter. A
statistic, a function of the original data, can be divided as follows.

i) sufficient statistic : a statistic which has the full information about § whether it

contains the ancillary information or not.

ii) complete sufficient statistic : a sufficient statistic which has no ancillary information.

iii) ancillary statistic : a statistic which has no information about @ or which has only

ancillary information.

Any non-constant function of a complete sufficient statistic should not have ancillary
information, where we usually take the concept of the first order ancillarity. The function
may be restricted to a bounded function, then we concern a weaker concept, bounded
completeness. The ancillary statistic is usually confined to be a function of minimal
sufficient statistics (Cox and Hinkley [5]). This is quite a reasonable restriction, since the
purpose of the ancillary statistic is to complete the loss of information. Sufficiency and
conditionality principles, which are actually twin concepts, can be understood as reasonable
arguments in view of the information oriented definitions in the above. When it is hard to

find the ancillary statistic or sufficient statistic, we may consider the local ancillary statistic
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{Cox [4]) or the local sufficient statistic (McCullagh [14]). through the score function.

. Unbiased and Most Informative Estimator

We call the process of finding an estimate estimation as conceived by Fisher. Many
requirements for a good estimator have been discussed for reducing the class of statistics.
Some approaches focused on first two moments by considering the unbiasedness and the
minimum variance where the loss function is quadratic. The minimum variance is a good
(maybe unanimously) criterion. However, the distribution of a statistic is determined by its
all moments not just by first two moments. We here consider the maximum Fisher
information criterion, i.e, we prefer one which has more Fisher information between two
unbiased estimators. Since the Fisher information can be approximated by the reciprocal of
the variance, a uniformly unbiased minimum variance estimator (UMVUE) can be
understood as an approximation of the unbiased and most informative estimator, The
unbiased and most informative estimator is defined to be one which has the most Fisher
information among the class of the unbiased estimators. If the density function of a
UMVUE belongs to the natural exponential family, the unbiased and most informative
estimator is equal to the UMVUE, since the the variance of the UMVUE achieves the
lower bound of the information inequality. Thus we have the natura! question whether one
unbiased estimator with smaller variance can have more Fisher information than the other
unbiased estimator. The answer is yet known.

The minimum requirement for a good estimator is the consistency. Then we choose one
which has the most Fisher information among the class of the consistent estimators. We
call it a consistent and most informative estimator. When the calculation of the Fisher
information is difficult, we may use the asymptotic information if the difference is not
more than o(n). If we consider the class of consistent and asymptotically normally
distributed (CAN) estimators, the consistent and most informative estimator is equal to the
estimator which has the least asymptotic variance.

We may give a restriction on the form of the statistic and find an unbiased and most
informative estimator. For example, suppose that the class of statistics is restricted to the
class of L-statistics which has received much attention because of their convenience and

robustness. We now let 7", be a linear function of order statistics as ¢ X+ -~ ¢t X
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In choosing the coefficients, we put first the condition of the unbiasedness (_2:& =1) or
consistency. Then we can consider maxc; .. ¢, I7,(f). Since the answer dcpen('is on some
conditions of coefficient and functional form, we may take the class to be the class of L-
statistics whose asymptotic distribution is a normal distribution. The conditions for the
coefficients and the functional form have been studied in Stigler ([26], {27]). Then we can
use the asymptotic information (the reciprocal of the asymptotic variance in this case) and
find the suitable coefficients which give the maximum asymptotic information. Tukey [29]
is the first one who studied the information in order statistics with a linear sensitivity
measure. He actually used a moment based lower bound of [r1.(#) whether he intended to
or not (see also Nagaraja [17]). We may approximate the Fisher information with the
moment based lower bound or the asymptotic Fisher information. Then the best linear
unbiased estimator or the asymptotically best linear estimator can be interpreted as the
estimator which maximizes the approximated Fisher information.

There are some convenient general methods which produce a good estimator like
maximum likelihood estimator, or minimum quantile distance estimator (L.aRiccia and
Wehrly [12]). Suppose that a real function g(x, 8) of x and & is an estimating function. We
may take it to be unbiased such that it has zero mean for all @ in the parameter space ©
Then the estimating function produces an estimator of # by solving the estimating function,
g(x, §) = 0. We will define the most informative estimating function to be one which has
the maximum value of F < 5% glx, 0})2/V(g(x, #3), which is the information in an
estimating function defined by Bhapkar (1972).

V. Recovery of the Loss of Information

In comparing two confidence intervals for an unknown parameter, the first principle
comes from the behaviour of two intervals at the true¢ parameter, i.e., we pi‘efer a shorter
interval. This is quite easy principle itself, but we have much controversies over it. The
second one comes from the behaviour of two intervals at the alternative, i.c., we prefer an
interval which covers the alternative with lower probability. We may take the alternative to
be fixed or locally around the true parameter. This is quite related with the theory of
testing hypothesis, so may be preferred. In determining the critical region, we may

consider unbiased critical region or likelihood based on critical region.
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When we construct a confidence interval based on @ suitably chosen statistic, we have
some loss of information if the statistic is not a sufficient statistic. The density form of the
non sufficient statistic does not give the full information. Thus we need to seck a density
form which gives the full information. This can be dove by considering the conditional
distribution. Then what should be the conditioning statistic? The conditioning statistic
needs 1o be one which has the full information about # jointy with the chosen statistic but
does have no-information about & itself. Thus the answer is the ancillary statistic. A similar
rule also holds for the definition of the sofficiency. This argument gives the conditional
inference on ancillary statistic in terms of completing the Fisher information, while Fisher
[8] has first given this idea in terms of transforming the data configuration.

The ancillary statistic alone has no information about 8, but it provides some
information about &, jointly with a statistic which is not a sufficient statistic. We note that
two ancillary statistics jointly may have some information about §. Thus the recovery of
lost information can be done by conditioning the ancillary statistic. The lost information
can be all recovered when we consider the ancillary statistic. For the location and scale
family, the choice of a statistic does not matter as far as it is location and scale equivariant.
However, the ancillary statistic may not be unique in some cases; McCullagh [15] consider
the Cauchy model which is closed under Mobius transformation and studied the difference

in the coverage probabilities due to the nonunique ancillary statistics.

V. Asymptotic Information

Usually it is quite difficult to get the e¢xact distribution of a statistic, so we use its
asymptotic distribution. Then the natural question is to compare the exact distribution
(moment) and the asymptotic distribution (moment) of the statistic. In the distribution case,
the error bound has been studied for the normalized mean of the i.i.d. sample, which is
known as Berry-Essen rate. In the variance case, the asymptotic variance is less than or
equal to the normalized limit of the exact variance. The conditions for the equality has
been studied. The most interesting statistic is a maximum likelihood estimator, but we do
not have any formal proof about the equality of both variances, which still remains an open
problem in statistics, but Professor R. R. Bahadur personally commented to me that the

problem is believed to be true though he does not have any formal proof, but not
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recommendable to statisticians of any age. Here we have the similar question whether the
asymptotic information is equal to the normalized limit of the exact Fisher information.
The answer will clarify the the efficiency of using the asymptotic distribution instead of the

exact distribution.

VI. Some Statistical Models

Random censored model : In a random censorship model where the censoring time is
random, the partial likelihood part has most Fisher information as claimed by Cox [3] and
studied by Efron [6] and Oakes [18]. We can further consider the marginal likelihood of
only the censoring indicator by ignoring the survival time of uncensored observations.
Then we may have an advantage of pertaining robustness instead of losing some
information. We may not lose much information for the usual survival analysis models.
Cox's proportional hazard model actually with the assumption of the parent distribution in
Lehman alternative, can be solved by the partial likelihood.

Regression model : One approach in robust regression model is to use regression
quantile suggested Koenker and Bassett [10]. The regression quantile has a similar
interpretation to the sample quantile. Thus the trimming appear in this topic and the
trimming portion should be considered in terms of the information.

Type 2 censored model : We have some situations where only a part of order statistics
is available. The study about the distribution of the information among order statistics has
been started by the eminent statistician J. W. Tukey who used the linear sensitivity as a
measure of information. Mehrotra et al. [16] first considered the Fisher information and
expressed the Fisher information in order statistics as a linear combination of moments of
order statistics for some distributions. Nagaraja [17] studied the relation between the Fisher
information and the linear sensitivity of order statistics (see also Park [20]). However,
while the recipe for the Fisher information in a set of order statistics is simple, but it has
been taken to be a messy problem (Amold et al. [1]), since it contains an iterated integral
to evaluate. Some inherent relations (recurrence relations) in the Fisher information have
been derived by Park ([20], {21]), which enables us to get the exact Fisher information in
consecutive order statistics for any parametric distribution. The result has its wide

applications where a part of order statistics needs to be considered like in life testing and
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survival analysis, nonparametrics, robust inference on location and scale and regression
parameters etc.

Forecasting records : Records can be interpreted as a sequence of smallest or largest
order statistics. (see Tryfos [28]). Thus the information tend in the sequence will follow the

assumed distribution.
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