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Ⅰ. Introduction  

The concept of Expectational stability (E-stability hereafter) 

proposed and developed by George Evans and Seppo Honkapohja 

in a series of papers has been one of the major contributions to the 

literature on convergence to a Rational Expectations equilibrium 

(REE) under adaptive learning. Based on the results by Marcet and 

Sargent (1989), Evans and Honkapohja (1998, 1999, 2001) have 

extensively analyzed the relation between E-stability and least- 

squares learnability of REEs. It is now well-known that there is a 

tight relation between them, known as the E-stability Principle. 

E-stability has been popular in the literature because it is much 

easier to implement E-stability than to implement least-squares 

learnability. Evans and Honkapohja (2001) provide a general 

treatment of E-stability for multivariate models and several authors 

have applied E-Stability in this framework. A selected list of papers 

includes Bullard and Mitra (2002), Honkapohja and Mitra (2004), 

Gauthier (2002), Adam (2003) and Evans and Honkapohja (2003b).

Recently, the relation between determinacy, learnability and 

E-stability has also been explored by Woodford (2003a,b), 

Giannitsarou (2005), McCallum (2007) and Bullard and Eusepi (2008). 

While determinacy has been mostly accepted as a economically 

desirable property of linear RE models, it is rather a mathematical 

property so that this stand of research examine whether E-stability 

can provide a economic interpretation of determinacy. Indeed, 

McCallum (2007) shows that these two concepts are tightly related 

even though they are not exactly the same. (See Cho and McCallum 

(2009) for instance.) In the case of indeterminacy, the relation 

becomes less tight because more than one solution can actually be 

E-stable.

In this paper, we provide a more specific account of the cases 
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where E-stability may not be a robust and consistent solution 

refinement for REEs to linear RE models particularly in the case of 

indeterminacy. Specifically, we show that the concept of E-stability 

in a multivariate framework is inherently model-dependent, implying 

that the E-stability property is not directly comparable across models 

or different representations of a given model. An immediate 

consequence is that one may draw different conclusions on E-stability 

of a REE to a model at hand under alternative representations of 

the same model and the same REE. Nevertheless, this result should 

not be treated as a weak point of E-stability, but as a consequence 

of the lack of clear specification of the information contents of the 

learning agents with bounded rationality.

The reason can be understood in terms of overparameterization 

of the perceived law of motion (PLM) relative to a REE of interest. 

To build up some intuition, it is instructive to first recall the 

implications of the well-known overparameterization associated with 

different PLM classes in a univariate framework. “Weak” E-stability 

applies when a REE (solution) and the PLM have the same 

functional form. For each coefficient of a state variable in a REE, an 

unrestricted PLM parameter is assigned to that variable. This 

implies that the number of PLM parameters is the same as that of 

the REE. When a more general functional form of the PLM relative 

to the REE is postulated, the PLM is overparameterized relative to 

the REE because the PLM has more state variables, and thus more 

parameters than the REE. In this case, a different concept, “strong” 

E-stability, applies. As such, weak and strong E-stability are 

associated with different learning rules. Intuitively, when economic 

agents postulate different types of PLMs, their implications on the 

REE may well be different and it is not surprising that they can 

lead to different conclusions on E-stability for the same solution. 

For future reference, we dene this type of overparameterization as 
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the between-PLM overparameterization.

In this paper, we show that the concept of E-stability in a 

multivariate framework is in general also subject to a very different 

type of overparameterization and that the extents of this kind of 

overparameterization are model-specific. For ease of exposition, let 

the fundamental (non-fundamental) PLM denote the PLM that has 

the same functional form as the class of fundamental (non- 

fundamental) solutions.1) For instance, consider a fundamental 

solution to a multivariate model and suppose that the fundamental 

PLM is postulated. Conceptually, E-stability in this case would be 

analogous to weak E-stability in a univariate framework because 

the PLM and the REE are of the same functional form. Indeed, the 

E-stability conditions described in chapter 10 of Evans and 

Honkapohja (2001) nest those of the univariate cases so that they 

are direct generalizations of the weak E-stability conditions from a 

technical point of view. However, it turns out that the concept of 

E-stability in multivariate models differs from weak E-stability in 

univariate models, just as weak and strong E-stability are different.

The reason is that virtually every macroeconomic model imposes 

model-specific restrictions on the parameters of the REE, and thus not 

all the coefficients of the state variables in a REE are free in general. 

In contrast, a PLM is postulated a priori without such restrictions 

and, as Evans and Honkapohja (2001) show, an unrestricted PLM is 

the most natural benchmark because agents are not likely to know 

 1) By fundamental solutions, we mean the REEs that depend on the minimal 

set of state variables. Non-fundamental (bubble or sunspot) solutions are the 

REEs that typically depend on additional variables to the minimal set of 

state variables, plus some other variables outside the model at hand. The 

fundamental solutions are also known as the minimal state variable (MSV) 

solutions in the literature. However, the solution obtained via the MSV 

criterion of McCallum (1983) is also often called the MSV solution. To avoid 

confusion throughout the paper, we use the term fundamental solution to 

denote the solution that depends on the minimal set of state variables and 

do not use the term MSV solution.
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the exact restrictions implied by the model. Hence, the PLM is in 

general overparameterized relative to the solution even within the 

same class of PLMs as the REEs. We call this type of overparame-

terization the within-PLM overparameterization.2) Since different 

models impose different restrictions on their REEs, the extents of 

the within-PLM overparameterization vary across models. Moreover, 

they also vary across different representations of the same model 

and the same solution. Consequently, the concept of E-stability of 

the solution depends on each model and its representation.

For the purpose of this paper, it is sufficient to show that the 

concept of E-stability is model-dependent in the context of the 

fundamental class of solutions and the fundamental PLMs. When a 

class of solutions and a broader class of PLMs are considered, 

analogously to strong E-stability in univariate models, then the 

PLM would be subject to both the within-PLM and between-PLM 

overparameterization and hence, E-stability would again be model- 

dependent. While we do not discuss the issue of underparame-

terization, E-stability associated with underparameterized PLMs 

would also be model-dependent in multivariate models.

Our finding that E-stability depends on the model and its 

representation is independent of the model determinacy, the dates 

at which expectations are formed or the stability of the REEs. In 

particular, the inclusion of constants in the model can lead to more 

stringent results for E-stability. For instance, the unique stationary 

fundamental REE to a multivariate model can be E-unstable. We 

provide a numerical example of this kind using a standard New- 

 2) Evans and Honkapohja (2003a) and Evans and McGough (2005) also 

examine different representations of sunspot equilibria and show that the 

stability properties depend on the solution representations. However, they 

postulate different classes of REEs and PLMs to a given representation of 

the model, rather than the same PLM to different representations of the 

model. Therefore, they study the implications of the between-PLM 

overparameterization, rather the within-PLM overparameterization.
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Keynesian macro model analyzed by Honkapohja and Mitra(2004), 

which has become a workhorse for the monetary policy analysis.

This paper is organized as follows. In section 2, we show that a 

modified version of the Dornbusch model considered by Evans and 

Honkapohja (1994, 2001) can be represented differently and that the 

E-stability results are different across model representations. Section 

3 derives the E-stability conditions in general linear RE models and 

show that E-stability is subject to the within-PLM overparameteriza-

tion in a multivariate framework. Section 4 provides several examples 

where different representations lead to different conclusions on 

E-stability. Section 5 concludes.

Ⅱ. The Dornbusch (1976) Model

Evans and Honkapohja (1994) and Evans and Honkapohja (2001) 

(EH hereafter) examine E-stability of fundamental solutions to the 

Dornbusch (1976) model under a univariate representation in terms 

of the log of the price level. The Dornbusch model considered by 

EH consists of a Phillips curve, an open economy IS curve, an LM 

curve and the open-economy parity condition. The model is 

reproduced as follows:

 

          
  (1a)

       
           (1b)

    
        (1c)

     
      (1d)

where   is the (log) price level,   is (log) aggregate demand,   is 

the nominal interest rate and   is the (log) nominal exchange rate. 
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  
 ∙ is the subjective expectations operator formed at time 

  . While EH use contemporaneous expectations in equations (1b) 

and (1d), we use lagged expectations in order to avoid compli-

cations regarding mixed dating of expectations. In addition, we add 

arbitrary constants in the model.

Whereas most modern macroeconomic models are derived using 

Rational Expectations, the primary concern in the learning literature 

is whether the subjective forecasting rule of the economic agents in 

the model converge to a REE when economic agents are not fully 

rational. Therefore, the expectations operator in the model is not 

equivalent to the Rational Expectations operator. However, it would 

be reasonable to assume that the degree of bounded rationality 

possessed by agents in the formation of the forecasting rule is the 

same as that in the model. To this end, we adopt two assumptions 

that Adam (2003) uses in his OLG model with sticky prices in 

order to make his model internally consistent with the forecasting 

rule.

 : Economic agents in a model hold the same subjective expectations 

provided that they are given the same information set.

 : Subjective expectations obey the law of iterative expectations: 

  
 

∙    
 ∙

In this paper, we do not analyze the model of heterogenous 

agents, so that   naturally holds. As Adam (2003) stated,   

implies that agents act as econometricians and their expectations 

forecast is unbiased.

Under the two assumptions, the Dornbusch model can be 

represented in several forms as:

      
     

       
        (2)
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where   is defined in table 1 for the 5 representations of the 

model. For instance,   is the original model itself and   is the 

univariate representation considered by EH derived under the two 

assumptions above. The definitions of     and for each 

representation are given in Appendix A.

【Table 1】Five Representations of the Dornbusch Model

Representation     ′
    ′    ′    ′  ′

Under Rational Expectations, i.e.,   
 ∙ of the model is 

replaced by the RE operator,    ∙. We consider a class of 

fundamental RE solutions as:

  
   (3)

where   must satisfy the following restriction imposed by the 

model:3)



 

 

    (4)

For  ,     and the solution to this equation is given by  

 
      where    and 


   are scalars. The remaining variables 

are solved for as     
      ,      

  

     and      
   

      . Therefore, they 

are completely characterized by a single solution parameter, 

  . For 

 3) It is straightforward to compute   once   is solved for. However, it is not 

necessary to do so as the value of   does not enter the E-stability 

condition.
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the other representations,   can also be defined corresponding to 


   as we show in Appendix A. Consequently, while different 

researchers may analyze different representations of the model and 

a solution, and there is no “right” or “wrong” representation, they 

in fact analyze an identical model and solution.

Since we consider a class of fundamental PLMs, this has the 

same functional form as (3):

      (5)

where   is unrestricted for each representation. Therefore, E-stability 

of a fundamental REE with respect to the fundamental PLM should 

be conceptually equivalent across different representations. In  , 

E-stability of a fundamental solution is defined as “weak” E-stability 

because the same PLM class is postulated. E-stability in multivariate 

models shown in chapter 10 of EH may also be analogously 

interpreted as “weak” E-stability precisely because of the same 

reason. Furthermore, the conditions of E-stability in multivariate 

models nest those in univariate models. That is, the conditions in 

multivariate models are direct generalizations of those in univariate 

models.

Consequently, it is natural to expect that the E-stability results of 

the REEs to the model would be invariant across different 

representations of the model and the solutions. However, it turns 

out that different representations lead to different conclusions on 

E-stability. The numerical parameter values considered by EH are 

            , and    . In this case, there are 

three stationary fundamental solutions for  . All the technical 

details can be found in the following section where we generalize 

the E-stability conditions outlined in chapter 10 of EH. Table 2 

summarizes the E-stability results (table 8 in Appendix A contains 
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all the detailed results). The results for R1 (the first and the third 

solution are E-stable) are those reported in Evans and Honkapohja 

(1994) and EH. However, none of the solutions is E-stable for  , 

the original model and for  .4)5) From the table, it is clear that 

the concept of E-stability must be in fact different across different 

model representations of the same model and REE. 

【Table 2】E-stability of REEs to Five representations of the Dornbusch 

Model

Representation         

 Yes No Yes

 No No No

 Yes No Yes

 No No No

′ Yes No Yes

What leads to different conclusions on E-stability across different 

representations of the model and REE? The reason can be unders-

tood in terms of the within-PLM overparameterization. Whereas   

in (3) as a fundamental solution is subject to (4),   in (5) as the 

fundamental PLM is postulated without restrictions. Specifically, the 

solution can be completely characterized by a single solution 

parameter 

   as shown in table 3. Across all representations, the 

solution (3) has only one free parameter while there are 4, 9, 16 

and 4 free PLM parameters in  ,  ,   and ′ , respectively. 

Consequently, the PLMs are overparameterized relative to the 

 4) When constant terms are excluded as EH did, the first solution is E-stable 

for all representation but the third solution is not for  and .

 5) When    and    , the model is determinate and the unique 

stationary solution,  , is E-stable in all representations. However, as 

Bullard and Mitra (2002) and McCallum (2008) show, a determinate but 

E-unstable REE can exist, so that the REE under determinacy may not 

always be E-stable across different representations. Indeed, we provide such 

an example using the standard New-Keynesian model later in this paper.
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respective REEs in multivariate representations, and the concept of 

E-stability precisely reflects these representation- dependent extents 

of the within-PLM overparameterization. In addition, the within- 

PLM overparameterization does not just depend on the dimension 

of the model representation, but also on the variables with which 

the model is represented, as E-stability results for   and ′  are 

also different. Furthermore, E-stability of the REE in a larger dimen-

sional representation is not “strong” relative to that in a smaller 

dimensional representation. For instance, E-stability of the solution 

  associated with     in   does not imply E-stability of the 

same solution in  .

【Table 3】  in Five Representations of the Dornbusch Model

Representation     ′



 




 


 

  











  
   
   











   
    
    
    




 


 

  

More importantly, regardless of the E-stability results, the extents 

of the PLM overparameterization depend on model representations, 

implying that the concept of E-stability should be distinguished 

across model representations, just as we distinguish between weak 

and strong E-stability across the different PLMs. For instance, while 

  and   yield the same E-stability results, the results in fact 

reflect different concepts of E-stability.

Our results here critically hinge on the assumption  .6) It is this 

assumption that enables us to derive the different model representa-

tions. When agents form a particular PLM, they derive the mapping 

 6) However, it should be noted that E-stability is representation-dependent 

even without this assumption, as we show in an example in section 4.






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from this given PLM to the ALM using the law of iterative 

expectations even under subjective expectations. Since the subjective 

expectations in the model reflect the same extents of bounded 

rationality by those agents who form the PLM, it is natural to 

assume that   applies to the expectations formation in both the 

model and the PLM. If this assumption is not allowed, then any 

representation, including   considered by EH, cannot be derived 

from the original Dornbusch model (the   representation) and it 

simply becomes a different model. In this instance, E-stability 

results for each representation cannot be interpreted as those of the 

Dornbusch model. Therefore, under  , our results indicate that it 

matters for learning who is learning which variables.

In the following section, we present E-stability conditions for 

general multivariate linear macro models and show that the type of 

E-stability varies not just across different representations of a given 

model, but also across different models. We also point out critical 

differences in the economic implications associated with the within 

and between-PLM overparameterization.

Ⅲ. Characterizing E-Stability in a General 

Framework

We present two classes of models under lagged and 

contemporaneous expectations that nest most of the models 

considered by EH and their series of papers, and derive E-stability 

conditions for the fundamental class of REEs. Then we show that 

the concept of E-stability differs across alternative representations of 

the same model.7)

 7) Some models may include mixed dating of expectations as in Adam, Evans, 

and Honkapohja (2006) and Evans, Honkapohja, and Marimon (2007). While 
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3.1 Lagged Expectations Models

Consider a linear model:

   
  

  
   (6)

where   is an ×  vector of variables observed at time  for a 

natural number  including 1.   is an ×  vector of constants 

and     and  are × matrices of parameters. 
∙ is the 

subjective expectation operator conditional on information available 

at time , which obeys   and  .   is an error term such that 


       In order to solve for the REE, we replace the 

subjective expectations with Rational Expectations,  ∙, in 

equation (6). The class of fundamental RE solutions is given by:

 
    (7)

where the × matrix   must solve the following restrictions 

implied by the model:



 

 


    (8)

In order to study learnability of the REE of the form (7) in terms 

of E-stability, a particular functional form of the PLM must be 

specified. In this paper, we restrict our interest to the fundamental 

PLM and it is given by:

        (9)

it is straightforward to derive E-stability conditions for such class of models, 

we do not consider them here for simplicity.



132  Seonghoon Cho

where  and   are free and not subject to the parameter 

restrictions in (8). By evaluating the model (6) with the PLM (9), 

we can derive the actual law of motion (ALM). The mapping from 

the PLM to the ALM is given by:

            
  




       

 


  (10)

It should be noted that   is repeatedly used to derive this 

mapping. The derivatives of the T-map are taken with respect to 

the unrestricted PLM parameters, and are given by:8)

  
 (11)

≡ ′
  

 ⊗    
 

           ′⊗    ′⊗ (12)

Notice that the derivative of the T-map with respect to ,  

does not depend on  . To examine whether a particular REE 

   is E-stable, we evaluate these derivatives with the chosen 

solution. Specifically, a fundamental solution (7) is said to be 

E-stable if all the eigenvalues of  and  have real 

parts less than 1.

It is crucial to understand that the PLM coefficient matrix   in 

(9) is unrestricted whereas the REE coefficient matrix   is restricted 

to satisfy (8). The number of parameters in   is at most   for the 

identification of the model while   has exactly  . Throughout this 

 8) It is straightforward to compute   using the simple formula, 

 , where   and  .



Expectational Stability and Determinacy in Multivariate Linear  133

paper, we assume that   has strictly less free parameters than   

in multivariate models, as virtually every structural macro model 

has parameter restrictions on its REE. Then, the PLM is overpara-

meterized relative to the REE in multivariate (representations of 

these) models. In addition, the coefficient matrices (   ) are 

model-specific and   is restricted by them. The same is true for the 

constants in PLM and the REE. Therefore, while the PLM is not 

model-dependent by itself, the extents of overparameterization of 

the PLM relative to a REE are model-dependent. Furthermore, the 

extents of overparameterization differ across representations of a 

given model and its REE, as we showed in the previous section. 

This type of overparameterization is what we call the within-PLM 

overparameterization. Therefore, E-stability must be defined with 

respect to a model, its representation and the class of PLM 

considered. Consequently, E-stability is not comparable across 

different models as well as different representations of a given model.

In the literature, however, E-stability is defined with respect to a 

particular PLM form, without an explicit reference to a model and 

its representation. For ease of exposition, let us classify RE models 

depending on the dimension of   and the values of   as in table 

4. E-stability conditions of fundamental solutions for the   and 

  models with respect to the fundamental PLM are given in 

pages 196 and 231 of EH, respectively. E-stability of   is also 

discussed on page 215 of EH. Although E-stability in   is not 

discussed in their book, it is straightforward to derive the 

E-stability condition as in (12). 

【Table 4】Classes of RE Models under Lagged Expectation

  

   

 ≠ 

   

Class    
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Since   nests  ,   and   as special cases, it seems 

natural to interpret E-stability of a fundamental REE with the 

corresponding fundamental PLM as the same kind for all classes of 

models as “weak” E-stability for univariate models. However, the 

concept of E-stability differs across multivariate models because it is 

defined with respect to the model-dependent within-PLM 

overparameterization. An immediate consequence is that one may 

draw different conclusions on E-stability of REEs to a given model 

when researchers use different representations of the same model. 

An example of this kind is given in the previous section: The 

representations   through   and ′  of the Dornbusch model 

belong to  ,  ,  ,   and  , respectively.

We now compare the implications of the within-PLM and 

between-PLM overparameterizations on E-stability. When a more 

general functional form of the PLM relative to the solution of 

interest is postulated, E-stability is subject to the between-PLM 

overparameterization, as different classes of PLMs represent different 

ways in which agents forecast the economic variables at hand. 

Consequently, it is natural for E-stability to have different economic 

implications on the REE across different PLMs. An example of this 

kind is strong E-stability of REEs to univariate models. For a given 

PLM, strong E-stability is model-independent.9) In contrast, E-stability 

associated with the within-PLM overparameterization in multivariate 

models is model-specific in spite of the fact that the PLM and the 

solution have the same functional form. Weak E-stability in 

multivariate models is such an example. Another example is strong 

E-stability in multivariate models, which is subject to both the 

within-PLM and between-PLM overparameterizations. As EH argue, 

 9) Strictly speaking, however, strong E-stability must also be defined with a 

particular PLM because different general PLMs imply different extents of 

overparameterization, leading to different concepts of E-stability.
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unrestricted PLMs are the most natural ones because agents with 

imperfect information are unlikely to know the existence of these 

equilibrium restrictions. Unfortunately, the specification of the 

unrestricted PLMs is precisely the source of the E-stability mismatch 

across representations in multivariate models.

As a result, a concept of model-independent E-stability in a 

multivariate framework is called for, comparable across models and 

yielding the same E-stability results regardless of the model 

representations of a given model. To do so, one may impose the 

model specific restrictions on the PLM parameters. However, 

imposing such restrictions directly on the PLM is not so natural in 

the bounded rationality framework as we discussed above. Instead, 

note that only E-stability in a univariate framework, such as   

and  , is in general comparable across models because they are 

not subject to the within-PLM overparameterization. Therefore, if a 

given multivariate model can be reduced into a univariate 

representation, then E-stability would be model-independent in 

general. However, this type of system reduction into a univariate 

framework would involve different dates at which expectations are 

formed as well as autoregressive and moving average terms, as EH 

emphasize. Furthermore, it is not clear whether such a system 

reduction is robust against the order of the variables with which 

the model is reduced.

3.2 Contemporaneous Expectations Models

Consider a linear model where expectations are taken contempo-

raneously:

   
    

         (13)


∙ also obeys   and  . The class of fundamental solutions 
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and the restrictions on the REEs are given by:

  
     (14)



 

    (15)

10)The fundamental PLM has the same functional form as (14) but 

without the parameter restriction (15):

        (16)

The T-mapping from the PLM to the ALM is given by:

   
  (17)

where     
 . The derivatives of the mapping with 

respect to the unrestricted PLM parameters are given by:

  
        

  (18)

  
 ′⊗    

           ′⊗  (19)

The E-stability conditions for the univariate and multivariate 

models with     are given in pages 202 and 238 of EH. The 

E-stability conditions for the models with  ≠   are not explicitly 

discussed. However, once again, it is straightforward to derive the 

E-stability conditions for these models. All the arguments laid out 

in models with lagged expectations are preserved under contempo-

raneous expectations.

10) Since there will not be E-stability conditions for , because 
  , we 

do not need to discuss about  in what follows.
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Ⅳ. Examples

In this section, we present several models that can be represented 

in two forms and derive the conditions under which a particular 

REE to a model can be E-stable or E-unstable, depending on the 

representation. First, we present a bivariate model composed of two 

independent univariate equations under lagged expectations. Then 

we show that a solution to the bivariate model consisting of 

individually E-stable solutions to each univariate model can be 

E-unstable. We also show that exactly the same results are obtained 

when a two-variable model has a recursive structure, where the 

second variable is independent of the first one but the first variable 

depends on the second one. Second, we present a bivariate model 

that has no E-stable REE. Then we show that when the model is 

represented in a univariate form, it has one or more E-stable 

solutions. By comparing the extents of the PLM overparameteri-

zation in the two models, we show that E-stability is not just 

representation-dependent, but also model-dependent.11) Finally, we 

show that when the model and the PLM contain constant terms, 

the E-stability conditions for the vector of constants are 

representation-dependent as well. As an economic example, we 

present a New-Keynesian model analyzed by Honkapohja and 

Mitra (2004) and show that the fundamental REE can be E-unstable 

in case of determinacy.

4.1 Model A: Combination of Independent Univariate 

Equations

We first consider a model that can be represented in   and 

11) In the previous version of this paper, we performed analogous exercises 

under these two models with contemporaneous expectations, and the results 

were essentially similar to those obtained under lagged expectations.
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  forms. 

  Representation: Consider two completely unrelated univariate 

equations without constants belonging to  . The (representation 

of the) model, the fundamental solutions, the solution restrictions, the 

fundamental PLM, the T-map and its derivative corresponding to 

equations (6) through (12) are respectively given by:

      
      

            (20a)

  
      (20b)


   



  


  (20c)

         (20d)

  
    (20e)

       (20f)

for    . Suppose that there are two real-valued but not 

necessarily stationary REEs, with   
  (without loss of 

generality) in each equation. 

  Representation: The   representation of the model can be 

written in a bivariate   form with       ′  and 

      ′ . The analogous equations to (20) are as follows:

    
     

         (21a)

 
    (21b)

  

 


  (21c)

      (21d)

 
    (21e)

 ⊗   ′⊗(21F)

where
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 



 


 

 
  




 


 

 
  




 


 

 

(20a)-(20c) and (21a)-(21c) are just different representations of the 

same model, solution and solution restrictions. Moreover, we did 

not use the assumption   in this case. Specifically, the RE 

solution   is given by:

 



 


  

  

where 

  is identical to that in (20b) subject to (20c) for    . 

Consequently, it is natural to expect that (20f) and (21f) deliver the 

same conclusions on E-stability. (21f) is the condition stated by 

Proposition 10.1 of EH in a multivariate context, which generalizes 

the E-stability condition in univariate models. Indeed, when the 

model is univariate, (21f) is identical to (20f). The latter condition is 

stated in Proposition 8.2 of EH.

However, it turns out that E-stability defined in (21f) differs from 

that defined in (20f). When evaluated with   in (23), it is straight-

forward to show that  is diagonal (so that its eigenvalues are 

the diagonal elements) and can be analytically expressed as:

    
    


    

               

   


′ (24)

This is where the discrepancy between the E-stability conditions in 

the   and   representations arises. The off-diagonal elements 

of   are in fact zeros and thus are not free. However,   is 

postulated without such restrictions and  produces non-zero 

second and third diagonal elements. For example, the second 
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diagonal element contains the parameters of the second equation, 

  and  , and the completely unrelated parameter of the first 

equation, 

  . Note that the first and fourth diagonal elements are 

just the E-stability conditions of each equation in (20f). Hence, the 

second and third roots are the additional conditions induced by the 

overparameterized PLM in the   representation. Therefore, (20f) 

and (21f) are conditions for different types of E-stability, implying 

that the concept of E-stability of a REE to a given model is 

representation-dependent.

If the E-stability results were the same across different representa-

tions, then the fact that the concept of E-stability is model- 

dependent would not pose a problem in practice. However, the 

results on E-stability may actually differ across representations. We 

now derive a condition under which the solution   consisting of 

the E-stable solutions    and    in the   form is not 

E-stable in the   representation. Suppose that all the parameter 

values are positive. Then, one such condition is given by:

   
   (25)

That is, whenever the two solutions of the first equation are larger 

than those of the second equation in   form, the solution 

consisting of individually E-stable solutions to both equations turns 

out to be E-unstable in the   representation.12)

As a numerical example, suppose that    

        and   . Table 5 shows the 

12) To see this, note that    
  

   , for   . Thus, the 

second diagonal element of    can be written as   
  

   
 

   . Therefore, it is greater than  as long 

as    
   . By symmetry, the other case is   

  .



Expectational Stability and Determinacy in Multivariate Linear  141

four diagonal elements of   for the two solutions of each 

equation. 

【Table 5】   of the  and 


 

 




   

   
       

   
       

   
       

   
       

As can be seen from the table, while    and    are E-stable 

in  , the solution   corresponding to    and    is not 

E-stable in  . Note also that the results are independent of the 

stationarity of the solutions; as long as (25) holds, the same 

outcome is obtained.

While we provide this example in order to clearly show that the 

concept of E-stability depends on the representation of a given model, 

there is no reason to put the two independent equations in a bivariate 

framework. A less trivial example would be a recursive two-equation- 

two-variable      model where   is an autonomous process 

and also influences   . Thus, consider the following model:

        
      

           

     
      

          

where    can adopt any form such as     
  

  
      and     . Then, it can be analytically shown that 

none of the previous results is altered.13) This is because the 
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solution   would be upper triangular and   would be block- 

recursive (upper triangular) with the same diagonal elements as 

those in equation (24).

4.2 Model B: Bivariate Model and its Univariate 

Representation

Consider a model that can be represented in   and   forms:

    
     

       
   

        (26)

    
    (27)

  Representation: The model can be represented in a univariate 

form in terms of   by substituting out  . This   representation 

of the model, the fundamental solutions, the solution restriction, the 

fundamental PLM, the T-map and its derivative, corresponding to 

equations (6) through (12), are respectively given by:14)

    
     

       
   

        (28a)

 
    (28b)


  



 


 
  


    (28c)

13) There is however, one additional E-stability condition for the first equation. 

For example, suppose    . Then the PLM of the first equation 

would be    . Therefore, E-stability must also be examined 

with respect to . In our example, the conclusions on E-stability are not 

affected by this additional condition.

14) Once the fundamental REE to the first equation is obtained and E-stability 

is examined, the fundamental solutions to the  equation can be obtained. 

Since this equation does not involve its own expectational term, we do not 

need to examine E-stability for the solutions to this equation.
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      (28d)

   
  

    (28e)

        (28f)

  Representation: In matrix form, the model can also be written 

as:

    
     

         (29)

where     ′    ′    and  are given by:

 



 


 

 
  




 


 

 
  




 


 

 
 (30)

Since the functional form of the   representation of this model 

is identical to (21a), the fundamental solution, the solution restriction, 

the fundamental PLM, the T-map and its derivative with respect to 

the unrestricted PLM parameters are exactly of the same form as 

(21b) through (21f). However, the extents of the restrictions on   

are of course different from those in the   representation of 

Model A, shown in the previous subsection. This is simply because 

the definitions of    and  are different, and   is given by:

 



 


  



 
 

 (31)

In Appendix B, we show that the E-stability conditions are given 

by:




 


        


  



 
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  

  



   (32)

Note that the first condition is the   E-stability condition for 

  . 

Therefore, one can reject E-stability of   in   and accept E-stability 

of the same solution in   if the first condition is met but either 

the second or the third, or both conditions are violated.15)

We replicate the example in section 9.5.1 of EH in order to show 

that the finding of representation-dependent E-stability is independent 

of the uniqueness of a stationary fundamental solution. With 

          and    , there exists a 

unique stationary fundamental solution,     , and a pair of 

complex conjugates.16)

With     , the three values in (32) are   . Since 

the first condition holds, the solution must be E-stable in  , but 

not in   because the second condition is violated. Indeed, when 

    ,       so that by is E-stable, but the eigenvalues 

of  are ±   and , implying a rejection of 

E-stability in  .

We also consider a numerical example with three stationary 

15) When a model is given in  form (equation (28a)), it is sometimes easy 

to examine determinacy of the model and solve for the REE by 

transforming the model into  using an auxiliary expectational variable, 

 in equation (27). This kind of model transformation is not uncommon in 

the literature and in his study of E-stability and determinacy, McCallum 

(2007) generalizes models by employing such transformation. George Evans 

and Seppo Honkapohja pointed out to us that representing (26) with (27) 

into the form of (29) may not be appropriate for the purpose of examining 

E-stability because  is itself a forecasting variable for agents. However, the 

opposite directional transformation from the  into  form under the 

assumption  would pose no such problem, as we do here.

16) Since the absolute values of the complex roots are less than 1, the model is 

still indeterminate although the real-valued fundamental solution is unique. 

We thank Evans and Honkapohja for pointing this out.



Expectational Stability and Determinacy in Multivariate Linear  145

solutions taken from page 217 of EH. They showed that a model in 

the   form with        

   and     has two E-stable solutions. But when it is 

represented in   form, none of the REEs becomes E-stable, as 

table 6 shows.

【Table 6】  of the  and 


 






Eigenvalues of 

     

     

     

Comparison between Model A and Model B

We have shown that E-stability of fundamental REEs to models A 

and B is representation-dependent. Here we show that E-stability is in 

general model-dependent as well when models are represented in 

multivariate form. In the   representation of both models A and 

B, the fundamental PLM is given by  



 


 

 
. However, the RE 

solutions are restricted by   



 


  

  
 and   




 


  



 
 

 for 

models A and B, respectively. That is, while the PLM is 

model-independent, the REEs differ across models. 

   has two 

independent parameters on its diagonal position. 

   has two non- 

zero elements on the first column, but they are not independent. 

As such, the way the PLM is overparameterized relative to the 

respective REE is different. This difference is reflected in the 

E-stability conditions: The E-stability condition for the   

representation of Model A is that all the elements of (24) be less 

than one. In contrast, it is given by (32) for Model B. Therefore, the 
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extents of the within-PLM overparameterizations differ across 

multivariate models in general and, consequently, the concept of 

E-stability is model-dependent.

Univariate representations of the models are, however, in general 

not model-dependent. In both the   representation of Model A 

and the   representation of Model B, the PLM has one 

unrestricted parameter   and the REE has also only one solution 

parameter. Therefore, E-stability is not subject to the within-PLM 

overparameterization.17) The concept of E-stability applied in these 

univariate representations is precisely “weak” E-stability. Consequ-

ently, E-stability in the   or   representations can be 

interpreted as “weak” E-stability in a multivariate framework in the 

sense that the functional form of the PLM is identical to that of the 

REE, and the model-specific restriction (21c) is taken into account.

In models A and B, the E-stability conditions in   are 

“stronger” than those in the univariate representation of each model 

because the former are sufficient for the latter. However, it is not 

known whether the concept of E-stability in any arbitrary 

multivariate representation of a model is stronger than that in the 

univariate representations in general. Also, E-stability in higher 

dimensional representations is neither necessary nor sufficient for that 

in a lower dimensional representation, as the numerical example of 

the Dornbusch model showed in section 2.

17) Even in univariate models, the fundamental PLM could potentially be 

overparameterized relative to the fundamental solutions. For instance, 

suppose that a univariate model has n state variables so that the REE has n 

solution parameters. If the number of structural parameters of the model is 

less than , then the number of independent solution (reduced-form) 

parameters would be less than n as well. Then, the PLM would technically 

be overparameterized as well. We do not investigate this issue in the 

present paper.
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4.3 New-Keynesian Model

We have shown that E-stability in multivariate models is in general 

representation-dependent. In the previous examples of section 4, 

constant terms have not been included in the models and the PLM. 

We now show that E-stability is representation-dependent under 

contemporaneous expectations, independently of model determinacy 

when constants are included in the model. 

Honkapohja and Mitra (2004) consider a canonical New-Keynesian 

model consisting of the Phillips curve, an intertemporal IS equation 

and a monetary policy rule, taken from Clarida, Gali, and Gertler 

(1999). While they focus on E-stability of non-fundamental solutions 

in case of indeterminacy, we consider E-stability of fundamental 

solutions. We reproduce the model as follows:

    
    

     (33a)

    
     (33b)

         
      (33c)

where   is the output gap,   is the inflation rate and   is the 

nominal interest rate.   and   are exogenous innovations to the IS 

equation and the Phillips curve, respectively. We introduce a 

constant   in their model so that the fundamental solutions 

depend on the constant term.18) 

Let      ′ . Then the model can be written in matrix form 

18) Bullard and Mitra (2002) pointed out that there may be a constant to the 

policy rule to account for the idea that the monetary authority may well 

wish to stabilize nominal interest rates around a value different from the 

steady state value consistent with zero inflation and steady state output 

growth, as argued by Woodford (1999). From a technical standpoint, the 

analysis in this section is not altered at all as long as an arbitrary constant 

is included in any equation(s).
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as:

   
       (34)

 










  
   

    
   

  














  
 










  
  
   

   
 










  
  
  

The model can also be written as a bivariate system as:

   
    

       (35)

where     ′  and:19)

 



 


 

       


  
  




 


   

   


  
 

 


  

 
   

 

 


 

 

The class of fundamental REEs to the model has the following 

form:

  
    (36)

where   and   can be easily solved numerically. Now we assume 

19) It is also possible to represent the model in terms of   ′  or  ′ . 
Note also that this is not the only possible representation of the model even 

with the same variables,     ′ . The E-stability results are sensitive to 

different formulations of the model in terms of the same variables.
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that agents postulate the fundamental PLM as:

    (37)

where  is a vector of constants. Then the T-mapping from the PLM 

to the ALM for  and   are given by equation (17). We use the 

baseline parameter values of Honkapohja and Mitra (2004) in case 

of determinacy, which are taken from Clarida, Gali, and Gertler 

(1999)                Instead of 

   , we set it to , which is also widely accepted in the 

literature. With these parameter values, the model is determinate 

and the unique stationary fundamental REE and the corresponding 

solution to the bivariate representation are given by:

     ′     ′
 










   
   
  

 


 


  

 

Since the model is determinate, it is natural to expect that this 

solution be E-stable, independently of the model representation. 

However, whereas the solution to the original three-variable system 

is E-stable, it is not the case for the bivariate representation as is 

shown in table 7:

【Table 7】   of the New-Keynesian Model

Eigenvalues of  
 Eigenvalues of  

 E-Stability

    ′ ±  ±  Yes

    ′ ± ±  No

Note: The number of repeated eigenvalues is in parentheses.
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Specifically, while the eigenvalues of  
 have real parts 

less than 1 across representations,  
 has a root greater 

than 1 in the bivariate representation. Therefore, E-stability results 

are also representation- dependent when constants are present in 

the PLMs. This again reflects that the extents of the restrictions on 

  and   differ across the two representations. This is also the case 

with no constants in the model (i.e., with a being a ×  and a 

×  vector of zeros, respectively) as long as an unrestricted vector 

of constants is included in the PLM. The E-stability conditions for a 

do not hold for quite a large parameter space over which the 

model is determinate. For      , the E-stability condition 

fails to hold in the bivariate representation. The same is true for 

      when there is no lagged interest rate   . 

It could be argued that this type of representation is not really 

necessary as one typically analyzes the original model or a two- 

variable system of inflation and the output gap by substituting out 

the interest rate (when   ). However, we derive this representation 

using the assumption   the one under which EH reduce the 

5-variable Dornbusch model into a univariate representation in the 

price level.20) Moreover, the AS equation (33b) can be derived a la 

Calvo (1983) utilizing the quasi-differencing technique, which relies 

heavily on the law of iterative expectations  . As such, it is hard 

to justify that   cannot be applied in a model which is derived 

using  , even under bounded rationality. This example shows 

that in study of REEs using E-stability, it is critical to clearly 

specify who are the learning agents and exactly which variables 

they postulate as state variables.

20) As EH analyzed the IS-LM model, they also wrote on page 228, “Although 

it is possible to solve out a reduced-form in the price level, the resulting 

equation would incorporate different dates at which expectations are 

formed..., It is simpler to look at general multivariate techniques...”.
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Our finding is hard to reconcile with the existing property of the 

determinate solution. First of all, the model considered here is 

arguably the most popular one in monetary policy analysis. When 

the model is determinate and the Taylor principle holds, such that 

there is a unique stationary fundamental solution, it is hard to argue 

against its validity as an economically relevant solution. While 

Bullard and Mitra (2002) narrow down the parameter space over 

which a determinate solution is E-stable, our analysis shows that the 

solution can be E-unstable over such an economically reasonable 

parameter space. If one accepts this solution as an economically 

sensible REE, then the E-stability condition for constants seem too 

stringent as a REE refinement device. Finally, we also perform 

analogous analysis with lagged expectations for robustness, and we 

find that similar results are obtained: E-stability conditions for 

constants can fail to hold for the two-variable representation of the 

model.

Ⅴ. Conclusion

This paper shows that the concept of E-stability in a multivariate 

framework is model-dependent. We also show that the model- 

specific nature of E-stability surfaces independently of the model 

determinacy, the uniqueness of the stationary fundamental solution, 

the stability of the REEs and the information structure. An immediate 

consequence of our analysis is that it is hard to compare the results 

of E-stability across models. We show that the source of model- 

dependent E-stability lies in the fact that a postulated PLM is in 

general overparameterized relative to the REE, which is subject to the 

model-specific restrictions. Therefore, developing model-independent 

E-stability conditions requires that the PLM at hand be not subject 



152  Seonghoon Cho

to the within-PLM overparameterization.

According to our results, the concept of E-stability would also be 

model-dependent in studies on the relation between determinacy, 

learnability and E-stability. For example, under fairly general 

conditions, E-stability and learnability are shown to be equivalent. 

Assuming this, Bullard and Mitra (2002) and Bullard and Eusepi 

(2008) study the relation between determinacy and learnability. One 

important finding of Bullard and Mitra (2002) is that determinacy 

does not necessarily imply learnability and indeterminacy does not 

necessarily imply lack of learnability. Alternatively, Heinemann 

(2000) and Giannitsarou (2005) show that E-stability and learnability 

may not be identical in some environments. All of these studies 

may deal with different types of E-stability if their models are 

multivariate. We leave the study of the interrelation between 

determinacy, learnability and model-independent E-stability as a 

future research topic.
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Appendix

A. Five Representations of the Dornbusch Model

All representations of the model can be written in the following 

general form:

     
     

   

       
       (38)

By pre-multiplying this equation by    , the model can be written 

as:

     
     

   

      
        (39)

where   
    

    
    

   and  

   . Since the constant term and     are the state variables, 

the fundamental solution has the following form:

 
    (40)

where   is subject to:



 

 

    (41)

Finally, the fundamental PLM is given by:

      (42)

where  and   are unrestricted.  , the parameter matrices  
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    (or     ) and   and   are representation-specific. 

The 5 representations are defined as follows (  needs not be 

defined as it is not present in the E-stability conditions):

 . Univariate Representation with    : The fundamental 

solution is given by     
    , Let      

  ,    ,  ,    and   

  . Then,      and   are defined as:

           
  

We need to solve for the remaining variables sequentially. They can 

be characterized in terms of 

   as     

       

   , 

and    
    where    

  
   

     and 

   
   

  

 . Bi-variate Representation with     ′ :

 


 


 

 
  



 


    

 
  



 


 

 


  ×   


 


  

 
  




 


 

  


 . Tri-variate Representation with      ′ :

 










  
    
    

  










  
  
  

  










  
   
  



 










  
   
  

  










  
  
  

  











  
   
   






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 . Four-variable Representation with       ′  :

 











   
     
     
   

  











   
   
   
    

  











   
   
   
   



  ×   











   
   

    
   

  











   
    
    
    

′ . Bi-variate Representation with     ′ :

 


 


 

   
  



 


 

  


 


 


 

   
  



 


 

  


 


 


 

  
  




 


 

  


【Table 8】 
  and  

  for Five Representations of the 

Dornbusch Model

Panel A.  representation

  
  



  

  

  

Panel B.  Representation

  
  



      

      

      ±




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Panel C.  Representation

  
  



        

        

        

Panel D.  Representation

  
  



          

          

   ±    ±  

Panel E. ′  representation

  
  



      

      

      

Note: The number of repeated eigenvalues of  in Panels C and D is in 

parentheses.

All the representations are nested in the   class of RE models 

in section 3. E-stability of a REE of each representation can be 

examined by computing the derivatives of the T-mapping from the 

fundamental PLM to the ALM evaluated with a REE,    , in 

(11) and (12). In each representation of the model, there are three 

fundamental solutions,  , corresponding to the three values of 

  . 

Table 8 shows the derivatives of the T-mapping computed for the 

three values of   in each representation.

B. E-stability Conditions for the  Representation of 

Model B in Section 4.2

Here we derive  analytically. Let      be the 

characteristic function of . Then       
    
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where

  ⊗ 


 

 




 


 

 




 


  



 
  

       



 


 



 
 

⊗



 


 

 


Direct computation yields:

       
     


   


  

      
    


   


   


 

In this example, the analytical solution of 

   is not available in 

general. However, we can still characterize the E-stability condition, 

i.e., the condition under which the real part of all roots of      

is less than 1, as follows:

      

      

   


 
  

    

   


 
   ⇔     

   

where   and   are the two roots of     .  
      implies 

that 

 
  


      , which is precisely the E-stability 

condition for the   representation of the model. The second and 

the third conditions are the additional conditions associated with 

the   representation of the model.
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다변수 선형 합리적 기대모형에서 기대 

안정성(Expectational Stability)과 

결정성(Determinacy)에 관한 연구*

조 성 훈**

21)

논문초록  

본 연구는 선형 합리적 기대 모형에서 해(solution)를 선택할 때 결정성

(determinacy)에 대한 대안으로서 잘 알려져 있는 기대 안정성

(expectational stability)의 특성을 재검증하고자 한다. 기대 안정성은 합

리적 기대 모형을 이해하는데 있어서 매우 중요한 역할을 하지만 기대 안정성

을 만족하는 복수의 해가 존재할 수 있기 때문에 결정성에 대한 완전한 대안

이 되지 못하는데, 특히 복수의 안정적 해가 존재하는 비결정성

(indeterminate) 모형의 경우에 더욱 더 그렇다. 본 연구에서는 동일한 모

형에서도 모형의 표현방식에 따라 기대 안정성이 서로 다른 결과를 줄 수 있

음을 보인다. 그 이유는 서로 다른 모형의 표현은 경제주체가 인식하는 해의 

계수를 학습(learning)하는데 있어서 선택하는 상태변수들에 대한 정보가 

암묵적으로 서로 다르기 때문이다. 약(weak) 기대 안정성과 강(strong) 기

대 안정성이 다르다는 것은 잘 알려져 있지만 이는 경제주체가 인식하는 해

의 형태가 다르기 때문에 일어나는 당연한 현상이다. 그러나 본 연구에서는 

경제주체가 인식하는 해의 형태가 동일한 경우에도 기대 안정성의 정도가 

다르고 이에 따라 특정 해가 모형의 표현방식에 따라 안정성을 가질 수도 있

고 그렇지 않을 수도 있음을 보인다. 본 연구에서는 이러한 특성이 기대 안

정성의 문제점이라기보다 경제주체가 인식하는 해에서 쓰이는 정보를 명확

하게 나타내지 않는 관행 때문이며 학습관련 연구에서 정보를 명확히 설정하

는 것이 필요함을 주장한다.

주제분류： C2102

핵심 주제어： 기대 안정성, 결정성, 합리적 기대 균형, 다변수 모형, 

Overparameterization

  * 본 연구는 한국연구재단의 지원을 받아 수행되었음(NRF-2010-327-B00089).

 ** 연세대학교 경제학과. e-mail: sc719@yonsei.ac.kr
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